Categories
Uncategorized

grepdef: a quick way to search for definitions in code

I live inside my code editor all day and something that I need to do pretty often is to search for the definition of a symbol (a variable, constant, or function). For example, I might be debugging a problem in a JavaScript file when I come across this code:

//...
let newData = translateDataFromRaw(rawData);
//...

I need to see translateDataFromRaw to understand how it works. How can I do this?

If I’m using an IDE or a project covered by a tags file, I can use the magical “jump to definition” feature. This is usually the best option as it is fast and nearly always accurate. However, if I’m using a simple code editor that does not have a “jump to definition” feature, or if the feature is still indexing my project (this can take quite a while sometimes), or if I want to find that function on the command-line for some other purpose without having to open up an IDE, then this will not work. What are my other options?

I could use grep to search my files for the string translateDataFromRaw and then find the definition from among the results. This works well and is pretty simple, unless that function is used in a lot of places. If there are hundreds of results, it may take me forever to find the one I want.

To help with this situation, I wrote a little command-line tool called grepdef. With it, I could just run grepdef translateDataFromRaw and I’ll instantly get the grep result for the definition.

$ grepdef translateDataFromRaw
./src/translators.js:function translateDataFromRaw(data) {

It’s way faster than “jump to definition” on some of the projects I work with. I even have it integrated into my editors with the plugins vim-grepdef and vscode-grepdef.

How does it work?

It’s basically the same as the grep technique I described above, except that it has two advantages:

First, it uses a regular expression to find symbol definitions unique to a specific code language. This can definitely be inaccurate, but in my experience it’s close enough.

Second, it uses ripgrep which is blazingly fast.

All together, grepdef saves me hours of development time. Maybe it will help you too?

Right now it only supports two language types: PHP and JavaScript/TypeScript, but it’s built to be easily extensible to other languages. Please suggest them as issues!

(Photo by Clay Banks on Unsplash)

Categories
Uncategorized

What I learned writing a game engine

One of the things I did on my recent sabbatical was to start coding a video game in JavaScript. I learned a lot in the process, and I thought I’d write down some of my experiences. (For the record, while I wrote the game engine myself, I used the excellent Pixi library for graphics.)

Classes are useful after all

The more I’ve written code in JS the more I’ve eschewed classes. JavaScript’s primitive object type is pretty succinct and powerful already. Also, the prototype object model has an awkward syntax when using new. The class keyword makes this better, but can increase confusion due to call site binding (class fields with arrow functions fix this, but that feature is still in stage 3). It doesn’t help that the new keyword is misleading to those familiar with classical inheritance. Lastly, using class makes it easier to use inheritance instead of composition.

I don’t actually think of any of these as problems with the language, since I find it easy to write clear code with just functions that pass around data. In my experience, web applications do best when they never mention the new keyword at all. However, my first attempt to apply this methodology to game development ended in quite a mess.

It turns out that while most of the web application data I’ve dealt with is easily represented and moved around using primitive types, the entities in a video game have so much internal state and so much interactive functionality that a one-way flow approach (like the one popularized by React) is terribly inefficient. The way I did it, rendering each frame was a nightmare of indirection.

Keeping the state and functions together within each object and sharing those functions using inheritance ended up being a whole lot simpler. It also meant that I had real object types that could be validated using Typescript.

Math is useful after all

When I tell people I’m a programmer, they often think it means I’m great at math. I’m not great at math; that’s why I like computers so much! But it turns out that dealing with virtual objects in a virtual space requires quite a bit of algebra, trigonometry, and calculus.

It doesn’t help that most of the game development tutorials I came across assume that you’re using an existing game engine to do the work. The first time I tried to figure out how to calculate the angle between two sprites, all I could find was instructions for slerping quaternions.

Do you know what a quaternion is, or spherical linear interpolation? Well, they’re totally unnecessary in this case. In 2d space, all I really needed was arctan2(), which I probably learned about in high school and subsequently forgot. But it took me a while to figure that out. I think that if I had been taught math in school in the context of game development, I probably would have paid a lot more attention.

Making a scripting language is great

As I was developing events in the game, I wanted a way to easily centralize dialog such that I didn’t need to write code to create conversation trees (actually they’re graphs!). I did this by creating a JSON file that encoded dialog nodes, each with their own responses, and links between those responses and other nodes.

This worked really well, but I quickly realized that I needed to also encode functions into these nodes so that actions could be taken when certain choices were made. When a player insulted the captain of an enemy ship, for example, I wanted to decrease the happiness of that character and possibly have the enemy ship attack. Furthermore, I found that when a ship did attack, I wanted to encode the ship’s behavior itself. In short, I began to write the content of my game in a script.

At that time I was putting JavaScript functions into my JSON file to encode actions. That meant that it wasn’t really JSON anymore. If I wanted to serialize my nodes, I’d have to put those functions into strings. This immediately felt wrong because I’d have to let my game engine execute arbitrary JavaScript, which is about as big of an anti-pattern as you can get.

Professional game engines are not written in JavaScript, so they can use JS as a scripting language, but I would have to do something else if I wanted to allow executing arbitrary scripts. I began to wonder if I could write my own, very simple scripting language for the purpose. I was fortunate to discover Nearley which made that both possible and fast.

I first wrote a grammar that looked something like JavaScript, except without any variables or named function definitions (although there were anonymous functions). Statements were composed of expressions which were composed of function calls and primitives. The functions were all pre-defined; this was my game’s API. All of that worked pretty well, but I ran into a problem when I added if statements for control flow.

Each statement had to end with a semicolon. Since the language’s programs had to be encoded as a JSON string, and JSON strings cannot have newlines, it was imperative that I could chain statements together on one line. However, if statements in most languages do not end with a semicolon. I had a really hard time encoding this into the grammar, and so each if statement had to end in a semicolon as well. With that requirement I found conditions really awkward to write.

if (distanceToPlayer() < 5) { if (getNpcHappiness('enemy1') > 2) { gotoNode('enemy1Greeting'); }; if (getNpcHappiness('enemy1') <= 2 { attackPlayer(); }; };

Eventually I realized: I had multi-argument functions and I had anonymous function definitions… so I could encode control flow as a function call! That is, instead of this procedural condition statement:

if (distanceToPlayer() > 5) { accelerate(); };

I could write this functional version:

if(distanceToPlayer() > 5, { accelerate(); });

The difference was subtle but powerful. I was able to remove nearly half of the grammar I had written, since the function call syntax was already supported.

My scripting language is not extremely powerful, but even with a simple grammar in place I was able to write most of the events of the game entirely in one JSON file. I can see how it would be possible to write a dedicated dialog and level editor for that file, which would totally separate the game and its engine.

Conclusion

I’d love to show you my game, but I was pulled into other adventures on my sabbatical before I was able to finish writing it, and it has a long way to go. Maybe I’ll pick it up some time in the future, but for now I’m happy about all the things I learned getting it as far as I did. If you want to look at my code, feel free to browse the repo!

Categories
Uncategorized

Await, there’s more!

This week I gave a talk at my local JavaScript meetup on the history, use, and future of Promises and I thought that you, dear reader, might be interested as well. Here’s the blurb:

JavaScript is an asynchronous language; it is designed to react to events and to trigger jobs that take an unknown amount of time to complete. While there is a fairly standard way to call functions when something happens, until recently there had been no standard way to chain these functions together, nor an easy way to handle failures inside the chain. Promises provide the solution. This talk will guide the group through the motivation for Promises, how they work, and what comes next (async/await and beyond).

My slides for the talk are at the following link:

https://sirbrillig.github.io/js-promises-slides/

During research for the talk I discovered that Top Level Await is already available in Chrome Devtools (not in Chrome itself). So if you’re just experimenting, you can run both of the following snippets. The first one uses the native Promise methods to fetch some data (try it!).

fetch('https://jsonplaceholder.typicode.com/todos/1') 
  .then(response => response.json()) 
  .then(json => console.log(json))

The following one is the same, but uses async/await.

const response = await fetch('https://jsonplaceholder.typicode.com/todos/1');
const json = await response.json();
console.log(json);

If you’re not familiar with the syntax of await, the new thing here is that with the proposal, you can use it outside of an asynchronous function. Otherwise, you can only use the await keyword in a function declared with async.

Writing a function with the async keyword actually just guarantees that the function will return a Promise object. If it does not, its return value is wrapped in a resolved Promise automatically. So in actual code today you’d need to write something like the following in order to use await.

async function getDataFromServer() {
  const response = await fetch('https://jsonplaceholder.typicode.com/todos/1');
  const json = await response.json();
  return json;
}

async function main() {
  console.log(await getDataFromServer());
}

main();

Just for completeness, you’ll need to know that while we can handle Promise rejections (and thrown Errors) with the catch() method on a Promise, you’ll probably want to use the regular try/catch syntax to handle rejections when using await.

When using await, if the Promise is rejected, the await expression throws the rejected value.

async function main() {
    try {
        await fillKettle();
        await boilWater();
        await addLeaves('green');
        await steepTea('1 minute'));
        drinkTea();
    } catch (error) {
        console.error('There was a problem making tea.');
    }
}

main();

If none of that makes sense to you and you’d like to start from scratch learning about Promises in JavaScript, check out the whole slide deck. A big thanks to everyone who came and especially to those who asked questions!

Categories
Uncategorized

Alternatives to Else

One of the first imperative programming concepts I ever learned was if/else. With this relatively simple power tool I could make decisions in my code based on any number of factors.

Of course, my early programs were… a little hard to read. I hadn’t yet learned one of the maxims of programming that I try to live by today: write code first for humans to read, then for computers.

Using if for conditions is pretty important. There’s other ways to code, but as a concept it’s usually extremely readable. On the other hand, the seemingly harmless else can add a world of problems. I’d like to talk a bit about why I feel this way, and explore some alternatives.

(note: these examples are in PHP, but the concepts are the same for javascript and other languages.)

Cognitive Load

The biggest issue I have with else is… “what’s the condition?” An else statement prefaces an arbitrarily large block of code, but unless I happen to have just written the code, I have to read upward past another arbitrarily large block of code before I can figure out the conditions on which that block will execute.

Many if/else statements start off with each block holding just one or two lines, and surely that’s not an issue, right? Who could complain about this innocent code?

if ($wantSomeToast) {
  butterBread();
} else {
  makeASandwich();
}

The problem arises when those code blocks grow. And they will grow. Without careful pruning, code only gets bigger. Perhaps not every if block will get to be 300 lines long, but at least some of them will, and in my opinion there’s really no need to take that risk.

When you’re debugging some issue and a diff or your editor only shows something like the following, who knows what’s really going on here?

  // ...
  bakeCake();
  $frosting = new Frosting();
  engageFroster($frosting);
} else {
  drillHole();
  $jam = Jam::fetchStrawberry();
  $result injectJam(new JamInjector(), $jam);
  if ($result !== 'ok') {
    throw new \Exception('Jam is jammed');
  }
  //...

Parsing this means scrolling up until you find the if condition, and then holding that in your head while you work on the else block. And what if there’s else if statements, or nested conditions?

Alternatives

In short, I think that when else is used it needs to be as close to the if as possible. Within a few lines, really. Because, again, this is not a problem:

if ($wantSomeToast) {
  butterBread();
} else {
  makeASandwich();
}

But this is a problem:

//... many lines...
} else {
  makeASandwich();
//... many lines...

To that end, any time you can easily avoid else, I’d argue that it’s worth the effort. Here’s some ways to do that:

The first thing I see a lot is a simple boolean return.

function isTostValid($toast): bool {
  if (empty($toast->grain)) {
    return false;
  } else {
    return true;
  }
}

I know that this models the original developer’s thought process, but look how large it is, and remember that it’s far too easy for later developers to come in and add unrelated code to those blocks. What if we did this instead?

function isTostValid($toast): bool {
  return ! empty($toast->grain);
}

Much easier to read. Another alternative is an early return. This set of conditions could grow very large after a while:

function getFavoriteJam($name): string {
  $jam = null;
  if ($name === 'joe') {
    $jam = 'marmalade';
  } elseif ($name === 'jane') {
    $jam = 'raspberry';
  } else {
    $jam = 'strawberry';
  }
  return $jam;
}

But it could be easily turned into a version without else, by using early returns. The first conditions will still override later ones, but any time we follow code and see return we know that we can stop reading. It becomes a set of simple decision making tools rather than one complex multi-decision machine.

function getFavoriteJam($name): string {
  if ($name === 'joe') {
    return 'marmalade';
  }
  if ($name === 'jane') {
    return 'raspberry';
  }
  return 'strawberry';
}

Sometimes you can turn an if/else into two if statements by repeating and inverting the first if condition. This may seem to violate the DRY (Don’t Repeat Yourself) principle, but in practice it grants a lot of clarity.

if ($name === 'joe') {
  $jam = 'marmalade';
} else {
  $jam = 'raspberry';
}

That else can just have its condition repeated to become:

if ($name === 'joe') {
  $jam = 'marmalade';
} 
if ($name !== 'joe') {
  $jam = 'raspberry';
}

Another common pattern which this demonstrates is a condition being used to set a variable. In those cases, we can use null coalescing (or logical OR in Javascript), ternaries, or even function calls to make the assignment less likely to grow out of control later. Here’s a ternary version of the above.

$jam = ($name === 'joe') ? 'marmalade' : 'raspberry';

In this version it’s immediately clear that the whole line is about assigning $jam based on a condition, and the condition is the very next thing. In the first version it would take reading five lines and then drawing some conclusions to be able to be sure that’s all that’s happening, and just imagine how hard it would be when twenty other statements get added to those blocks!

If there’s a lot of computation or multiple decisions needed before the variable assignment, put all of that into its own small function and you end up with this, which is even more clear:

$jam = getJamFlavor($name);

There’s a lot of other ways we can avoid else in our code, and even if you’re skeptical, I’d like to recommend you give it a try! There’s no one best option, and it might just change how you think about coding entirely.

(Photo by Jens Lelie on Unsplash)